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A SIMPLE STOCHASTIC MODEL OF NON-IDEAL MIXER* 
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A simple model is presented in the paper of an non-ideal mixer. Assuming that the process 
in question is random it is shown that the distribution of the residence time in the mixer may be 
described by the gamma distribution. The proposed model was tested experimentally with good 
results. An attempt is made to interpret the model physically. -. 

Numerous attempts exist in the literature to describe the distribution of residence 
time in a real mixer. According to our opinion, however, very little attention was 
devoted to the gamma distribution. An expression for the gamma distribution 
function can be obtained easily by representing formally the real mixer by a cascade 
of ideal mixers 

(At)m - l 
J.(t) = A - - exp (-At) 

(m - I)! 
(1) 

and replacing the integer m, designating the number of ideal mixers, by an arbitrary 
number exceeding unity. 

We have succeeded in finding only several works4 ,14-17, mostly without being able 
to study their original content, which deal with this problem. According to our 
opinion this is the consequence of the lack of physical interpretation of the expression 
viewing the real mixer as a "cascade of a non-integer number of ideal mixers". 
This paper presents on one hand a simple stochastic model leading to the gamma 
distribution and attempts to interpret the real mixer in the above manner. 

THEORETICAL 

From the view point of random processes an ideal mixer may be thought of as a tank 
in which the residence time, I:, is a random variable with an exponential distribu
tion of the form 

Part XLV in the series Studies on Mixing; Part XLIV: This Journal 40, 3794 (1975) . 
In an abbreviated form presented at the V-th International CHISA Congress, Prague 1975. 
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and the probability density 

(2) 

and the mean 

ti = E(T;) = f ro tJi(ti) dti = 1/), . 
o 

(3) 

Introducing at the inlet of the ideal mixer a concentration impulse cl(t) = abet), 
where a is a proportionality constant and bet) is the Dirac function 7, we obtain at the 
outlet a response in the form 

(4) 

From this it follows that at the outlet of the mixer there is a non-zero concentration 
from the very beginning. This situation, provided that the outlet does not coincide 
with the inlet, is clearly implausible in a real mixer. 

Let us consider therefore that only a part of the real mixer is being mixed ideally 
and that the "ideal" residence time T; is increased by a time lag Tp , which is also 
a random variable with the probability density 

The residence time in the real mixer, Tn is thus also a random variable given by 

(5) 

with the probability density 

fret) = dP{O ~ T. < t}/dt 

and the mean 

1r = E(Tr) = f: t fret) dt = l/x. (6) 

In order that we may characterize the way the real mixer differs from the ideal 
mixer, let us introduce the degree of ideality Z of the real mixer by the relation 

Z = T;/t = Z(t) . (7) 
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This degree indicates the "remoteness" of the real mixer from the ideal behaviour 
for a given value Tr = t. It is apparent that Z may assume values from the interval 
between 0 and l. 

The mean degree of ideality, Z, will be the expected value of the above definition 
equation, namely 

Z = E{Z(t)} = z(t) . (8) 

Let us introduce now two assumptions which will allow us to determine the probability 
density for the residence time T.: in the real mixer: 
Al: The ideal residence time, 7;, and the time lag, Tp , are mutually independent. 
A2: The mean degree of ideality of the real mixer, Z, is not a function of time. 

With the aid of the assumption Al we may describe the relation between the 
probability density of the random variable appearing in Eq. (5): '. 

(9) 

In view of the fact that Z, according to Eq. (7), is a conditioned random variable 
(at the given value Tr = t), we may write an expression for its mean3

, z(t), which is not 
a function of time as assumed in A2: 

The symbol a designates the value of the mean degree of ideality. 
For some of the expressions to be presented subsequently it is convenient to introduce 
also the inverse of this quantity, b: 

b = l/a, [1 ~ bJ . (11) 

Simultaneous solution of Eqs (9) and (10) yields the sought expression for the pro
bability density fret). It is advantageous to make use for this purpose of the Laplace 
transform 7 • A function f(t) transformed is designated by the symbol ljI(p). From 
Eqs (10) and (11) then follows 

_ dljlr = _ b dljl j ljI 
dp dp p. 

(12) 

By transforming Eq. (9) we obtain 

(13) 
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and the transformation of Eq. (2) yields an explicit expression for I/Ij 

(14) 

On differentiating Eq. (14), substituting into Eq. (12) and considering Eq. (13) 
we obtain the following differential equation 

_ dl/l r = _ b_ 1/I 
dp p + A r' 

(15) 

The appropriate boundary condition expresses the fact that fret) is the probability 
density and thus I/Ir lp=O = 1. Solution of Eq. (15) yields the expression (see the 
Appendix) 

(15a) 

and the inverse transformation gives the sought probability density6 

flt) = A(At)h-l exp (-At)/r(b) (16) 

where reb) is the gamma function 9
• 

It is simple to calculate the mean residence time ir in a real mixer by substituting 
from Eq. (16) into (6) 

tr = b/A = 1/x. (17) 

From Eqs (3), (11) and (17) there follows an expression for the ratio of the residence 
times in the "ideal" part of the mixer and the whole real mixer, this being equal 
to the degree of ideality 

Using a simple concept presuming that the residence time in the real mixer (as 
a random variable) is longer than the residence in its ideal part and using further 
two assumptions about the involved random variables we arrived at the sought 
gamma distribution. 

It is apparent that for integer values of the parameter b Eq. (16) becomes identical 
with Eq. (1). Considering further the expression for the inverse value of the residence 
time, in from Eq. (6) and Eq. (17) we may substitute into (16) to get 

fret) = X b(xbt)b-l exp (-xbt)/r(b) (18) 

where the parameters b and x are mutually independent. 
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For b = 1 Eq. (18) reduces to Eq. (2); for b growing to infinity an expression 
for plug flow results. 

It can be shown (see the Appendix) that with the assumptions Al and A2 the degree 
of ideality is a random variable with the probability density fz(Z), which is not 
a function of time 

fz(z) = (b - 1)(1 - Z)b - Z, [0 ~ Z ~ IJ . (19) 

EXPERIMENTAL 

Eq. (18) was tested on two experimental set-ups. The standard set-up consisted of a cylindrical' 
vessel 0·18 m3 by volume equipped with an impeller with the blades inclined at an angle 45°. 
Principal characteristics of this set-up are given in Fig. I and the ranges of the experimental' 
variables are indicated in Table I. The non-standard set-up was also a cylindrical vessel divided 
by horizontal perforated plated into four chambers (Fig. 2) . In the center of each chamber there 
was a six-blade turbine impeller. These turbines were all of the same size and their blades were 
mounted on a common shaft. In one series of experimental runs the ratio of the diameter of the 
impeller to that of the vessel was 0'267; in the sedond series this ratio was 0·32. The ranges of the 
involved variables are also shown in Table I. 

The charge of the mixed batch was in all cases water; the tracer was a saturated solution 
of potassium chloride injected at the inlet by a syringe in such a manner as to keep the duration 

Ln 
N 
l= 

FIG. I 

4>10 

4> 450 

900 

Standard Experimental Set-Up 
Dimensions in mm. 

o 
10 

FIG. 2 

Non-Standard Experimental Set-Up 
Dimensions in mm. 
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of the injection proper below 2 s. The input signal may thus be regarded as the o-impulse. The 
response to this input was measured by conductometry. The temperature of the batch was held 
between 16 and 18°C and was recorded during experiments to the accuracy of O·l °C. Some 
calibration tests were also carried out to find the temperature dependence of the conductivity 
of the solution. Because the output concentration fluctuates randomly, there were always at 
least five duplicate measurements carried out, the results of which were averaged. We had at our 
disposal also some results obtained on a large scale crystallizer with the volume of the batch 
20 m 3 in which the response was measured by colorimetry11 . 

The obtained time dependences of concentration were processed by a standardized routine 
consisting of finding first the normalized response as a function of time and the corresponding 
first and the second moments. By non-linear regression these results were processed to give 
the parameters K and b in Eq. (18) for each series of experimental runs. As first estimates of these 
parameters we took the data found from the first and the second moments of the distributions. 

In order that we might be able to at least roughly estimate to what extent the experimentally 
found distributions agree with the theoretical models we evaluated the corresponding deviations 
necessary for the F-test12 . Fig. 3 shows the experimental data for an experimental run on the 
non-standard set-up, the corresponding gamma distribution and the same data for the industrial 
crystallizer. 

The parameters K and b were correlated in a similar manner as done by Conover4
, that means 

in dependence on experimental conditions characterized by the following dimensionless variables: 

nix = g1(nVrIVt', 

b - 1 = g2(nlxt 2 
, 

(20) 

(21) 

where Vr is the volume of liquid in the batch, g arid h are parameters which are functions of the 
geometrical arrangement of the equipment and probably also the physical properties of liquid. 
Their values were estimated by the least-squares method and summarized in Table I. This 
table show salso the recalculated data of Conover4

. In a graphical form the correlation (20) is 
shown in Fig. 4; the correlation (21) is shown in Fig. 5. The dash-and-dot line corresponds to 
Conover's data4

. 

Note: The scale on the ordinate of Fig. 62 in the .cited paper4 and the coeffi.cient of the cor
relation equation are apparently two orders of magnitude higher; in the opposite case the ex
perimentally found values of residence time in the mixer would be almost hundred times higher 

TABLE I 

Ranges of Experimental Conditions and Dependence of Parameters of the Gamma Distribution 
on these Conditions (Eq. (20) and (21» 

Experimental V, 10- 4 m3 s-1 n, S-l gi hI g2 h2 
arrangement 

Standard 0·67-1·35 4·5 - 8·5 0·33 1·06 24·6 -0'502 

Non-Standard 1'0 -2,3 0,8-5,0 1-63 0·885 55·1 -0'532 

Conover's data4 1,85 - 4'35 0·7-7'7 0·47 1·002 150 -1'178 
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than the theoretical value resulting from the ratio of the volume of the equipment and the volume
tric flow rate of liquid. The data in this sense were corrected. The parameter designated in the cited 
work4 as is identical with our parameter II. and its inverse value thus is not, as erroneously 
stated in the work, equal to the mean residence time in the real mixer (Eq. (17}). In the cited 
paper, however, this deviation is not very large as Conover's experimental arrangement was. 
rather close in behaviour to the ideal mixer (see Fig. 63 shown in that work). 

DISCUSSION 

Fig. 3 shows typical experimental data and it is apparent that the proposed function 
(18) well agrees with the experimentally found course. The results of the F-test 
also confirm this conclusion, even though they cannot serve in case of the function 
which is nonlinear in parameters as a strictly quantitative statistical criterion 13. 

In any case though these results indicate that the gamma disti'ibution with the 
parameter b describes better the experimentally found dependence than the cascade 
of ideal mixers with an integer m whose value deviates least from the calculated 
parameter b. It turns out that, as could be expected, the disagreement between the· 
experimental data and the distribution with an integer parameter m is the greater 
the closer the value of b to unity. 

Regarding the effect of experimental conditions on the parameters of distribution x 
and, b, our experiments further confirm the conclusions of Conover4

. The residence: 

120 min 200 

t,s 

FIG. 3 

Processing of Experimental Results 
Non-standard set-up: proposed function 1, 

expo data 0 ; 20 m3 crystallizer: proposed 
function 2, expo data •. 

FIG. 4 

Dependence of;( on experimental Conditions: 
Standard set-up: correlation --, expo 

data •. Non-standard set-up: correlation 
-------- expo data O. Conover's· correlation4 :: 

correlation -.-.-.-.-, expo data. 
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time in the real mixer 1/" (Eq. (6)) is practically directly proportional to the theoretical 
residence time VrfV because the exponent hI in Eq. (20) for both experimental set-ups 
is close to unity. The behaviour of the real mixer approximates that of the ideal 
one (i.e. the parameter b is close to unity) as may be apparent from Eq. (21) with 
increasing rpms of the impeller, i.e. with increased intensity of mixing under other
wise identical conditions. 

Both conclusions are plausible and fully confirm the suitability of the proposed 
model. Higher values of the parameter b for the set-up with four impellers (Fig. 5) 
agree well with the concept of the cascade of ideal mixers; at higher rpms there 
exist apparently an intensive flow of liquid through the perforated plates and indi
vidual chambers cannot be regarded as isolated mixers. 

The deviations of our data from those of Conover4 in case of the parameter b 

may be probably accounted for by increased sensitivity of this parameter to the 
geometrical arrangement of the set-up. 

While the physical meaning of the parameter" as the inverse of the mean residence 

time is clear it is not the case of the parameter b as long as we are not prepared 
to accept the rather dubious character of non-integer ideal mixer. As an alternative 
explanation we offer the following : 

We shall assume that in a real mixer of volume Vr there is an ideally mixed core 
of volume V; (Fig. 6) and, further, that the residence time within and without the 

01 '------!c----'----;!2-=-0 -(-n;'-~-)1..:'Q..:O-2--:;;!100 

FIG. 5 

Dependence of b on Experimental Conditions 
The same caption as that for Fig. 4. 
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FIG. 6 

Scheme of Real Mixer 
Vi ideally mixed core, Vp 'region of plug flow, 
Tk inlet stream tube, TI outlet stream tube .. 
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core are proportional to the corresponding volumes. With respect to Eq. (7) we thus 
may write 

T;/t = ~(t)/Vr = z(t) (22) 

and the above defined random function of time may be thought of as the volume 
of the ideally mixed core relatively to the volume of the whole mixer. This relative 
volume varies randomly in time and, according to Eq. (19), is a stationary random 
function. Now the question is that of the character of the flow outside the ideal 
core, i.e. in the volume designated by Vp (Fig. 6). Thus clearly, Vr = Vi + Vp. Let us 
consider that at a time t = 0 we inject a tracer of concentration cl(t) in a manner 
defined above (see the test between Eqs (3) and (4)) and write down the balance · 
over the real mixer 

(23) 

where for the moment unknown functions ({Ji and ({Jp characterize the flow within 
and without the ideally mixed core respectively. For the core we may clearly write 
(see also the Appendix) 

(24) 

Let us assume that within the volume Vp the liquid moves at plug flow. It can be 
shown then that (see the Appendix) 

(25) 

Substituting these relations into Eq. (23) and dividing by Vr we obtain 

XCI - XC2 = Zdc2/dt + (1 - Z)(-c2 /t). 

Finally the whole equation is averaged with respect to Z by multiplying the equation 
by the probability density fz{z) defined by Eq. (19) and integrating between the 
limits 0 and 1. Considering Eq. (10) we thus obtain the following differential equation: 

a dc2/dt + (1 - a) (-c 2Jt) = XCI - XC2' (26) 

A solution of this equation (see the Appendix) is the expression 

C2(t) = 0: fret) . (27) 

This suggests that the residence time in the real mixers possesses the gamma distri
bution. 
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The whole real mixer may thus be looked upon as a superposition of the ideal 
mixer and plug flow while the superposition in this context does not mean a mere 
summation of the residence times ~ and Tp. For this reason we shall present here 
a rather imperfect concept based on the combination of the ideal mixer and plug 
flow: Consider first a stream tube, Tb of small cross sectional area ilSj through 
which a small portion of the input impulse enters at the instant t= 0 the real mixer. 
This stream tube of the length kj empties into , the ideally mixed core of constant 
volume Yj. Consider another stream tube, Tr, of the same cross section and the length 
fj which emerges from the mixed core and empties at the discharge from the real 
mixer (Fig. 6). Let us assume that the liquid in both stream tubes is at plug flow 
velocity v. For the probability density of the overall residence time of liquid passing 
through both tubes and the ideally mixed core we may then write 

from which after integration we obtain 

[ ( 
/. + k.)] [ I· + k.] frl t) = {Xb exp -xb t - _J-v- J , t ~ _J - v- J ~ (28b) 

0, [t < lj : k j
] J 

while b = Vr/Vj • 

Let us consider further that there are many such tubes and that the input impulse 
is uniformly distributed among them. If at the outlet the content of these tubes in each 
instant is perfectly mixed then all stream tubes may be schematically depicted as 
straight tubes with that the sequence of the ideal mixer and the stream tube in the 
outlet part of the real mixer was interchanged (Fig. 7a). 

Further we define the total cross sectional area of all stream tubes S by 

N 

S = L ilSj . 
j = 1 

Here N is the number of all tubes and the quantity Lis defined by L = Vr/S, which is 
the mean length of the tubes assuming that these fill the whole volume of the real 
mixer (plug flow in the mixer). Finally we can write an expression f?r the velocity 
of liquid, v, assuming that v is constant in all stream tubes and equal ViS, and an ex
pression for the residence times, tpj in a stream tube, considering Eq. (28) and the 
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just written definitions: 

(29) 

where Xj = (lj + kj)/L is the dimensionless length ofthe stream tube. 

The probability density fret) of the residence time in the whole real mixer is obtained 
as a sum over all stream tubes weighted by their cross sections after we had substituted 
from Eq. (29) into (28) 

N 

fret) = (xb)/S L exp [ -xb(t - tpj)] LlSj . (30) 
j= I 

The expression on the right hand side of Eq. (30) describes the function of the 
ideal mixer in Fig. 7 a into which at the instant t = tpj we inject a new dose of the 
tracer. From Eq. (28) and Fig. 7 it is apparent that following the sign for summation 
the non-zero terms will be only those corresponding to sufficiently short stream 
tubes, i.e. such for which tpj is shorter than the interval t from the instant of the 
entry of the impulse into the real mixer. The number of the stream tubes through 
which the tracer has passed until the time t into the ideal mixer is thus a function 
of this time instant. 

If the number N of the stream tubes is large and the cross section LlSj of each 
of them is sufficiently small, as may be anticipated in our case, the summation in Eq. 

A 

a b 

FIG. 7 

Gamma Distribution of Residence Time in Real Mixer 
a) Individual stream tubes; b) relative length of stream tubes after limiting transition; A inlet of 

the real mixer; B outlet of the real mixer; the remaining caption is the same asthat for Fig. 6. 

Coller.tion Czechoslov. Chern. Cornrnun. [Vol. 42] . [19771 



Simple Stochastic Model of Non-Ideal Mixer 2485 

(30) may be replaced by integration and we may write 

fr(t) ~ xb { exp [ - xb(t - t p)] dy , (31) 

where i1Yj = i1Sj /S. 
Now we exchange the variable in Eq. (31); the limits of the newly formed integral 

can be determined by considering Eq. (30). Thus 

(32) 

While the second derivative on the right hand side can be easily found from Eq. (29) 
(dx/dtp = x), for the calculation of the first derivative we have to know explicitly 
the form of the function y = y(x), i.e. the curve which confines the lower end of the 
stream tube in Fig. 7. This function must clearly satisfy the following two stipulations: 
i) The solution of the integral in Eq. (32) must be the Eq. (18), ii) the volume of all 
stream tubes must equal the volume of the real mixer minus the volume of the ideal 
part. This means that 

{ xdy = 1 - a . (33) 

Such a function exists, i.e. 

y(x) = {y(xb; b - 1)}/r(b - 1) (34) 

as we may find by substituting from Eq. (34) into (32) and (33) and by considering 
Eq. (11). The expression in the numerator is the incomplete gamma function 10

, 

defined by 

f
Xb 

y(xb; b - 1) = ° exp (-u) U
b

-
2 du . 

The course of this function is depicted in Fig. 7b. The shaded area designates the 
stream tubes through which by the instant t the inlet impulse will have reached the 
ideal mixer; the length of the longest of these tubes is XI· 

The above concept suggests that the total length of a single stream tube is zero: 
the ideal mixer must - as could be expected - be "in contact" with the inlet and the 
discharge of the mixer. 

The concept presented here has numerous shortcomings (e.g. infinite stream tube, 
constant velocity of liquid in all stream tubes) but in spite of this is capable of ac-
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counting for the character of the flow in a real mixer, leading to the gamma distribution 
of the residence times. It is believed that more plausible models can be found. In our 
case more attention should be paid to the description of the residence times the pro
spects of which has confirmed our experiments. 

APPENDIX 

The Derivation of the Probability Density for the Degree of Ideality of the Mixer 

Consider two random variables Ti and Tr, the probability density of which, li(f) and I.(t), 
are given by Eqs (2) and (16). Let us define two more random variables 

(35) 

(Eq. (5» and 

(36) 

Now we seek the probability density, Ip(tp), for the random variable Tp, and the conditioned 
probability density, Iz(z I t), of the random variable Z for Tr = f (Eq. (7». 

In the first part of the problem we shall start from Eq. (9) and its Laplace transform (13). 
After substituting from Eqs (14) and (15a) into Eq. (13) and some algebraic manipulations we 
obtain the expression 

ljIp = [A/(p + A)]b-l , 

the object of which iss 

(37) 

For the solution of the second problem we shall find first the probability density of the variables 
Z and Tr using the known probabilities I/f), Ip(tp): 

(38) 

At the extreme right of the last equation there is the symbol for the absolute value of the Jacobi's 
determinant of the transformation of the variables2 

ti = zt, tp = (1 - z) t. 

In view of Eqs (2) and (37) we obtain 

!Zl(t, z) = A exp (-Atz) At(1 - Z))b-2 exp (-At(1 - z)) t/r(1 - b), (39) 

while, as may be readily apparent 

I
D(ti , tp)1 = t. 
D(t, z) 
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Finally we write down the expression for the sought conditioned probability density3 

fzCz I t) = fzt(t, z)/fr(t) . (40) 

After substituting from Eqs (16) and (39) into Eq. (40) we can easily verify that 

fz(z I t) = fzCz) = (b - 1) (1 - Z)b-2 • 

This way we arrived at Eq. (19) from which we may conclude that the conditioned probability 
density is not a function of time t and that the random function Z(t) in Eq. (7) is a stationary 
random function. 

Solution of the Differential Equation for the Real Mixer by Laplace Transform 

The Laplace transforms of Eq. (26) is 

(41) 

where !fie is the image of the function c2(t) and the constant ex is the image of the function cl (t). 

By differentiation of Eq. (41) we obtain 

(42) 

After some algebraic rearrangement of Eq. (42) and considering Eq. (11) we arrive at the fol
lowing ordinary differential equation 

(43) 

with the boundary condition !fIe lP=O = ex. After separation of variables 

dl/lc/t/fe = -b dp/(p + xb) 

the solution takes the form 

Inl/le = -bln(p + xb) + InC 
and hence 

From the boundary condition we obtain an expression for the constant C in the form C = 

= ex(xb)b. Thus the final solution of Eq. (43) is 

I/Ie = o:[xb/(p + Xb)]b . 

For xb = A (Eq. (17» and ex = 1 we obtain Eq. (15a). The inverse transformation of Eq. (44) 
yields 

C2(t) = o:[xb(xbt)b-l exp (-xbt)]/r(b). (45) 

Comparing Eqs (45) and (18) we obtain Eq. (27). 
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a) Omitting the second term on the left hand side of Eq. (42) we obtain the solution 

t/lc = a[xb/(xb + p)]. (46) 

The inverse transformation yields 

cz(t) = axb exp (-xbt) 

which confirms the statement expressed by Eq. (24). 
b) Omitting the first term on the left hand side of Eq. (42), differentiating with respect to p 

and dividing by the constant a we obtain 

(47) 

The boundary condition for this equation is clearly the same as that forEq. (43). A solution 
of Eq. (47) is thus 

( 
b - 1 ) t/lc = a exp - ----;;b P 

whose object is the o-function8 

czCt) = ab[t - (b - l)/xb] 

which proves Eq. (25) and the statement preceding this equation. 

a 
b 
C 

LIST OF SYMBOLS 

mean degree of ideality 
inverse value of the mean degree of ideality 
integration constant, kg s m - 3 

inlet concentration, kg m - 3 

outlet concentration, kg m - 3 

diameter of vessel, m 
diameter of impeller, m 

operator of expected value (mean) 
distribution function 
probability density 
probability density of variable z 
coefficient in Eq. (20) 
coefficient in Eq. (21) 
exponent in Eq. (20) 
exponent in Eq. (21) 
length of stream tube emerging from the ideally mixed core, m 
mean length of the stream tube, m 
length of the stream tube before entering the ideally mixed core, m 
number of ideal mixers 

(48) 

(49) 
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N number of stream tubes 
n frequency of revolution of the impeller, s - 1 
p{} probability 
p Laplace variable, s -1 

S total cross sectional area of all stream tubes, m2 

/),S cross sectional area of a stream tube, m2 

T residence time (random variable), s 
time, s 
integration vari'able 

V volume of mixer, m3 

V volumetric flow rate of liquid, m3 S-l 
velocity of liquid in stream tube, m s -1 

x relative (dimensionless) length of stream tube 
y relative cross section of stream tubes 

2489 

Z degree of ideality of real mixer (random variable - relative volume of the ideally mixed 
core in the real mixer) 
degree of ideality of the real mixer 
proportionality constant (amount of tracer injected), kg s - 1 m - 3 

r gamma function 
incomplete gamma function 
Dirac function, s-l 

IfJ characteristic of flow in mixer, kg m - 3 s-l 
If! image in the Laplace transform space 
If! c image of function c2(t) in the Laplace transform space, kg s m - 3 

). parameter of distribution, s-l 
x inverse quantity to the residence time in mixer, s-1 

SUBSCRIPTS 

related to ideal mixer 
related to j-th stream tube 

p related to plug flow 
related to real mixer 
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